Oscillation of second order neutral equations with distributed deviating argument

نویسندگان

  • Zhiting Xu
  • Peixuan Weng
چکیده

Oscillation criteria are established for the second order neutral delay differential equation with distributed deviating argument (r(t) (x(t))Z′(t))′ + ∫ b a q(t, )f [x(g(t, ))] d ( )= 0, t t0, where Z(t)= x(t)+p(t)x(t − ). These results are extensions of the integral averaging techniques due to Coles and Kamenev, and improve some known oscillation criteria in the existing literature. © 2006 Elsevier B.V. All rights reserved. MSC: 34C10; 34k11; 34K40

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation of Solutions to a Higher-order Neutral Pde with Distributed Deviating Arguments

This article presents conditions for the oscillation of solutions to neutral partial differential equations. The order of these equations can be even or odd, and the deviating arguments can be distributed over an interval. We also extend our results to a nonlinear equation and to a system of equations.

متن کامل

Oscillation of Second-order Quasi-linear Neutral Functional Dynamic Equations with Distributed Deviating Arguments

In this paper, some sufficient conditions for the oscillation of second-order nonlinear neutral functional dynamic equation ( r(t) ( [x(t) + p(t)x[τ(t)]] )γ)∆ + ∫ b a q(t, ξ)x [g(t, ξ)]∆ξ = 0, t ∈ T are established. An example is given to illustrate an application of our results.

متن کامل

Oscillation Theorems for Even Order Neutral Equations with Continuous Distributed Deviating Arguments

A class of even order neutral equations with continuous distributed deviating arguments [x(t) + ∫ d c p(t, η)x[r(t, η)]dτ(η)] + ∫ b a q(t, ξ)f(x[g(t, ξ)])dσ(ξ) = 0 is considered and its oscillation theorems are discussed. These theorems are of higher degree of generality and deal with the cases which are not covered by the known criteria. Particularly, these criteria extend and unify a number o...

متن کامل

An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007